

СПбГЭТУ «ЛЭТИ» первый электротехнический

Р.Р. Фаткиева

Интернет вещей

Практическая работа. Получение данных с датчика подключенного к Arduino

СПбГЭТУ «ЛЭТИ», 2021 г.

1. АППАРАТНОЕ ОБЕСПЕЧЕНИЕ ЮТ. ПОЛУЧЕНИЕ ДАННЫХ С ДАТЧИКА ПОДКЛЮЧЕННОГО К ARDUINO

Цель работы: изучение теоретического материала о взаимодействии датчика и микроконтроллера, формирование практических навыков разработки программы для Arduino IDE, изучение ее простейшей программы.

1.1 . Общие сведения

Arduino IDE - это среда разработки программ для платформы Arduino. Она позволяет взаимодействовать с Arduino как для передачи данных, так и для прошивки кода. Интерфейс программы Arduino IDE 1.6.7 представлен на Рис. 1.

Рис. 1

Интерфейс имеет простую структуру. В верхней части расположена панель навигации, ниже кнопки для сохранения и загрузки программы в Arduino, следом текстовый редактор для написания программ, зеленая

область под текстовым редактором отображает информацию о загрузке программы на Arduino, последняя часть - это консоль для вывода служебной информации. В нижнем правом углу показывается информация о порте, к которому подключена Arduino. Программы, разрабатываемые для Arduino, иногда называют «Скетчами». Скетчи пишутся в текстовом редакторе и сохраняются в файлах с расширением «.ino».

1.2. Порядок выполнения работы

1.2.1 Ознакомление с базовым набором программ

Среда разработки Arduino IDE содержит базовый набор программ (Скетчей), который возможно использовать как для обучения, так и применения их, как шаблонов, для разработки собственных проектов.

Для ознакомления с работой программного обеспечения необходимо загрузить программу «Blink», которая позволяет проявить работоспособность аппаратного обеспечения платы за счет демонстрации «мигать» светодиодом на плате Arduino.

Рассмотрим панель управления, представленная сервисами изображенными на Рис.2

Рис. 2

Первая кнопка, в виде «галочки», осуществляет проверку написанного кода, следующая (стрелочка) проверяет работоспособность загруженного программного кода, и сразу после проверки осуществляет его загрузку на микроконтроллер. Следующие три кнопки по порядку отвечают за создания нового документа, открытие существующего и сохранения текущего.

Нажать на кнопку «Открыть», выбрать пункт «01.Basics» и программу «Blink». Проверить открытие нового окна, с уже представленной на листинге 1 программой.

Листинг программы 1


```
void setup() {
    // initialize digital pin LED_BUILTIN as an output.
        pinMode(LED_BUILTIN, OUTPUT);
}
// the loop function runs over and over again forever:
void loop() {
     digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
        delay(1000); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
        delay(800); // wait for a second
}
```

1.2.2 Подключение Arduino к компьютеру

С использованием разъема USB подключить плату Arduino к компьютеру. Обратить внимание, что если всё подключили правильно и питания для платы достаточно, то должен загореться зеленый светодиода напротив надписи «On». Подключение платы Arduino изображено на Рис. 3.

Рис. 3

Определить порт подключения по надписи отображенной в левом нижнем углу программы (определение платформы и порта при подключении Arduino представлено на Рис. 4).

Загрузить программу на Arduino нажав на кнопку «Загрузка». Проверить уведомление о начале компиляции и завершении компиляции, которая отражена в строке сообщений, и окончание загрузки кода на плату Arduino (на Рис. 5).

Рис.5

Осуществить проверку работоспособности кода. Для рассмотреть поведение светодиода. Как только программа была загружена светодиод на плате начинает мигать с задержкой в 1 секунду. Это означает, что плата работает нормально и готова для создания новых проектов. Моргание светодиода на плате Arduino изображено на Рис. 6.

Рис. 6 [1]

1.2.3 Подключение датчика к Arduino

Heart Rate Pulse Sensor - датчик для измерения сердечного ритма. Данный датчик используется для измерения частоты пульса (измеряется в количестве ударов в минуту). Датчик имеет три вывода:

VCC - 5 V;

GND - земля;

SIG - аналоговый выход.

Контакты питания VCC и GND Heart Rate Pulse Sensor подключить к 5V и GND Arduino UNO, a SIG подключить к аналоговому входу A3 (схема соединения продемонстрирована на Рис. 7).

Рис. 7

Перейти во вкладку CODE, где открыть окно с уже готовой программой, код которой представлен на листинге 2. Выполните код.

Листинг программы 2

```
// Include Libraries
#include "Arduino.h"
#include "pulse-sensor-arduino.h"
// Pin Definitions
#define HEARTPULSE_PIN_SIG
                                Α3
// Global variables and defines
// object initialization
PulseSensor heartpulse;
// define vars for testing menu
const int timeout = 10000;
                                 //define timeout of 10 sec
char menuOption = 0;
long time0;
void setup()
{
    // Setup Serial which is useful for debugging
    // Use the Serial Monitor to view printed messages
    Serial.begin(9600);
    while (!Serial); // wait for serial port to connect. Needed for native USB
    Serial.println("start");
    heartpulse.begin(HEARTPULSE_PIN_SIG);
    menuOption = menu();
}
void loop()
{
    if(menuOption == '1') {
    // Heart Rate Pulse Sensor - Test Code
    //Measure Heart Rate
    int heartpulseBPM = heartpulse.BPM;
    Serial.println(heartpulseBPM);
    if (heartpulse.QS == true) {
    Serial.println("PULSE");
    heartpulse.QS = false;
    }
    }
    if (millis() - time0 > timeout)
    {
        menuOption = menu();
    }
}
// Menu function for selecting the components to be tested
// Follow serial monitor for instructions
char menu()
{
    Serial.println(F("\nWhich component would you like to test?"));
    Serial.println(F("(1) Heart Rate Pulse Sensor"));
    Serial.println(F("(menu) send anything else or press on board reset button\n"));
    while (!Serial.available());
   // Read data from serial monitor if received
```



```
while (Serial.available())
{
    char c = Serial.read();
    if (isAlphaNumeric(c))
    {
        if(c == '1')
               Serial.println(F("Now Testing Heart Rate Pulse Sensor"));
        else
        {
            Serial.println(F("illegal input!"));
            return 0;
        }
        time0 = millis();
        return c;
    }
}
```

}

Откройте окно с консолью с автоматическим определением Arduino и активным портом, передающим данные считайте данные с датчика в реальном времени.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. В чем необходимо обязательно убедиться перед загрузкой программы в контроллер Arduino?
- 2. Где находится встроенный светодиод? Как он обозначен? К какому цифровому выходу он подключён?
- 3. Где находятся светодиоды, которые могут служить индикаторами загрузки программы? Как они обозначены?
- 4. Какая функция отвечает за включение светодиода?
- 5. Что означает ошибка при загрузке скетча «programmer is not responding»?
- 6. В отличие микропроцессоров от микроконтроллеров?
- 7. Сколько цифровых контактов (входов / выходов) есть на платформе? Где они расположены?

СПИСОК ЛИТЕРАТУРЫ

- 1. Муромцев Д.И., Шматков В.Н. «Интернет Вещей: Введение в программирование на arduino» СПб: Университет ИТМО, 2018. 36 с.
- 3. «Петин В. А., Биняковский А. А. П29 Практическая энциклопедия Arduino. - М.: ДМК Пресс, 2017. - 152 с https://www.rulit.me/data/programs/resources/pdf/Petin_Praktich eskaya-enciklopediya-Arduino_RuLit_Me_603742.pdf

